
Understanding Human Gaze Communication by
Spatio-Temporal Graph Reasoning

Lifeng Fan1*, Wenguan Wang2,1∗, Siyuan Huang1, Xinyu Tang3, Song-Chun Zhu1

1 Center for Vision, Cognition, Learning and Autonomy, UCLA, USA
2 Inception Institute of Artificial Intelligence, UAE 3 University of Science and Technology of China, China

lfan@ucla.edu, wenguanwang.ai@gmail.com, sczhu@stat.ucla.edu
https://github.com/LifengFan/Human-Gaze-Communication

Figure 1: We study human gaze communication dynamics in two hierarchical levels: atomic-level and event-level. Atomic-level gaze
communication describes the fine-grained structures in human gaze interactions, i.e., single, mutual, avert, refer, follow and share (as shown
in the left part). Event-level gaze communication refers to high-level, complex social communication events, including Non-communicative,
Mutual Gaze, Gaze Aversion, Gaze Following and Joint Attention. Each gaze communication event is a temporal composition of some
atomic-level gaze communications (as shown in the right part).

Abstract

This paper addresses a new problem of understand-
ing human gaze communication in social videos from both
atomic-level and event-level, which is significant for study-
ing human social interactions. To tackle this novel and chal-
lenging problem, we contribute a large-scale video dataset,
VACATION, which covers diverse daily social scenes and
gaze communication behaviors with complete annotations
of objects and human faces, human attention, and com-
munication structures and labels in both atomic-level and
event-level. Together with VACATION, we propose a spatio-
temporal graph neural network to explicitly represent the
diverse gaze interactions in the social scenes and to in-
fer atomic-level gaze communication by message pass-
ing. We further propose an event network with encoder-
decoder structure to predict the event-level gaze commu-
nication. Our experiments demonstrate that the proposed
model improves various baselines significantly in predict-
ing the atomic-level and event-level gaze communications.

*Lifeng Fan and Wenguan Wang contributed equally.

1. Introduction
In this work, we introduce the task of understanding

human gaze communication in social interactions. Evi-
dence from psychology suggests that eyes are a cogni-
tively special stimulus, with unique “hard-wired” pathways
in the brain dedicated to their interpretation and humans
have the unique ability to infer others’ intentions from eye
gazes [15]. Gaze communication is a primitive form of
human communication, whose underlying social-cognitive
and social-motivational infrastructure acted as a psycholog-
ical platform on which various linguistic systems could be
built [59]. Though verbal communication has become the
primary form in social interaction, gaze communication still
plays an important role in conveying hidden mental state
and augmenting verbal communication [2]. To better un-
derstand human communication, we not only need natural
language processing (NLP), but also require a systematical
study of human gaze communication mechanism.

The study of human gaze communication in social inter-
action is essential for the following several reasons: 1) it
helps to better understand multi-agent gaze communication
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behaviors in realistic social scenes, especially from social
and psychological views; 2) it provides evidences for robot
systems to learn human behavior patterns in gaze communi-
cation and further facilitates intuitive and efficient interac-
tions between human and robot; 3) it enables simulation of
more natural human gaze communication behaviors in Vir-
tual Reality environment; 4) it builds up a common sense
knowledge base of human gaze communication for study-
ing human mental state in social interaction; 5) it helps to
evaluate and diagnose children with autism.

Over the past decades, lots of research [22, 26, 29, 33]
on the types and effects of social gazes have been done in
cognitive psychology and neuroscience communities. With
previous efforts and established terminologies, we distin-
guish atomic-level gaze communications into six classes:
• Single refers to individual gaze behavior without any so-
cial communication intention (see Fig. 1 (1)).
• Mutual [2, 5] gaze occurs when two agents look into eyes
of each other (see Fig. 1 (2)), which is the strongest mode of
establishing a communicative link between human agents.
Mutual gaze can capture attention, initialize a conversation,
maintain engagement, express feelings of trust and extro-
version, and signal availability for interaction in cases like
passing objects to a partner.
• Avert [21, 47] refers to averted gaze and happens when
gaze of one agent is shifted away from another in order to
avoid mutual gaze (see Fig. 1 (3)). Avert gaze expresses
distrust, introversion, fear, and can also modulate intimacy,
communicate thoughtfulness or signal cognitive effort such
as looking away before responding to a question.
• Refer [50] means referential gaze and happens when one
agent tries to induce another agent’s attention to a target
via gaze (see Fig. 1 (4)). Referential gaze shows intents
to inform, share or request sth. We can use refer gaze to
eliminate uncertainty about reference and respond quickly.
• Follow [9,51,64] means following gaze and happens when
one agent perceives gaze from another and follows to con-
tact with the stimuli the other is attending to (see Fig. 1 (5)).
Gaze following is to figure out partner’s intention.
• Share [43] means shared gaze and appears when two
agents are gazing at the same stimuli (see Fig. 1 (6)).

The above atomic-level gazes capture the most gen-
eral, core and fine-grained gaze communication patterns
in human social interactions. We further study the long-
term, coarse-grained temporal compositions of the above
six atomic-level gaze communication patterns, and general-
ize them into totally five gaze communication events, i.e.,
Non-communicative, Mutual Gaze, Gaze Aversion, Gaze
Following and Joint Attention, as illustrated in the right
part of Fig 1. Typically the temporal order of atomic gazes
means different phases of each event. Non-communicative
(see Fig. 1 (a)) and Mutual Gaze (see Fig. 1 (b)) are one-
phase events and simply consist of single and mutual re-

spectively. Gaze Aversion (see Fig. 1 (c)) starts from mu-
tual, then avert to single, demonstrating the avoidance of
mutual eye contact. Gaze Following (see Fig. 1 (d)) is com-
posed of follow and share, but without mutual, meaning that
there is only one-way awareness and observation, no shared
attention nor knowledge. Joint Attention (see Fig. 1 (e))
is the most advanced and appears when two agents have
the same intention to share attention on a common stim-
uli and both know that they are sharing something as com-
mon ground. Such event consists of several phases, typ-
ically beginning with mutual gaze to establish communi-
cation channel, proceeding to refer gaze to draw attention
to the target, and follow gaze to check the referred stimuli,
and cycling back to mutual gaze to ensure that the experi-
ence is shared [39]. Clearly, recognizing and understanding
atomic-level gaze communication patterns is necessary and
significant first-step for comprehensively understanding hu-
man gaze behaviors.

To facilitate the research of gaze communication un-
derstanding in computer vision community, we propose a
large-scale social video dataset named VACATION (Video
gAze CommunicATION) with complete gaze communica-
tion annotations. With our dataset, we aim to build spatio-
temporal attention graph given a third-person social video
sequence with human face and object bboxes, and predict
gaze communication relations for this video in both atomic-
level and event-level. Clearly, this is a structured task that
requires a comprehensive modeling of human-human and
human-scene interactions in both spatial and temporal do-
mains.

Inspired by recent advance in graph neural network [46,
60], we propose a novel spatio-temporal reasoning graph
network for atomic-level gaze communication detection as
well as an event network with encoder-decoder structure
for event-level gaze communication understanding. The
reasoning model learns the relations among social entities
and iteratively propagates information over a social graph.
The event network utilizes the encoder-decoder structure to
eliminate the noises in gaze communications and learns the
temporal coherence for each event to classify event-level
gaze communication.

This paper makes three major contributions:
1) It proposes and addresses a new task of gaze commu-

nication learning in social interaction videos. To the
best of our knowledge, this is the first work to tackle
such problem in computer vision community.

2) It presents a large-scale video dataset, named VACA-
TION, covering diverse social scenes with complete
gaze communication annotations and benchmark re-
sults for advancing gaze communication study.

3) It proposes a spatio-temporal graph neural network and
an event network to hierarchically reason both atomic-
and event-level gaze communications in videos.



2. Related Work
2.1. Gaze Communication in HHI

Eye gaze is closely tied to underlying attention, inten-
tion, emotion and personality [32]. Gaze communication
allows people to communicate at the most basic level re-
gardless of their verbal language system. Such gaze func-
tions thus transcend cultural differences, forming a univer-
sal language [11]. During conversations, eye gaze can be
used to convey information, regulate social intimacy, man-
age turn-taking [32]. People are also good at identifying the
target of their partner’s referential gaze and use this infor-
mation to predict what their partner is going to say [8, 56].

In a nutshell, gaze communication is omnipresent and
multifunctional [11]. Exploring the role of gaze communi-
cation in HHI is essential but has been rarely touched by
computer vision researchers. Current research in computer
vision community [7,16,27,62,63] mainly focuses on study-
ing the salient properties of environment to model human
visual attention mechanism. Only a few [17, 44, 45] studied
human shared attention behaviors in social scenes.

2.2. Gaze Communication in HRI
To improve human-robot collaboration, the field of

HRI strives to develop effective gaze communication for
robots [2]. Researchers in robotics tried to incorporate re-
sponsive, meaningful and convincing eye gaze into HRI [1,
3], which helps the humanoid agent to engender the de-
sired familiarity and trust, and makes HRI more intuitive
and fluent. Their efforts vary widely [2, 4, 54], including
human-robot visual dialogue interaction [36, 41, 55], story-
telling [40], and socially assistive robotics [58]. For exam-
ple, a tutoring or assistive robot can demonstrate attention
to and engagement with the user by performing proper mu-
tual and follow gazes [38], direct user attention to a target
using refer gaze, and form joint attention with humans [25].
A collaborative assembly-line robot can also enable object
reference and joint attention by gazes. Robots can also serve
as therapy tools for children with autism.

2.3. Graph Neural Networks
Recently, graph neural networks [20,28,35,49] received

increased interests since they inherit the complementary ad-
vantages of graphs (with strong representation ability) and
neural networks (with end-to-end learning power). These
models typically pass local messages on graphs to explic-
itly capture the relations among nodes, which are shown
to be effective at a large range of structured tasks, such as
graph-level classification [10, 13, 60], node-level classifica-
tion [23], relational reasoning [30, 48], multi-agent com-
munications [6,57], human-object interactions [18,46], and
scene understanding [34,37]. Some others [12,14,31,42,52]
tried to generalize convolutional architecture over graph-
structured data. Inspired by above efforts, we build a spatio-
temporal social graph to explicitly model the rich interac-

Event- Non-Comm. Mutual Gaze Gaze Aversion Gaze Following Joint Attention
level (%) 28.16 24.00 10.00 10.64 27.20

A
to

m
ic

-le
ve

l(%
) single 92.20 15.99 3.29 39.26 26.91

mutual 0.76 75.64 14.15 0.00 16.90
avert 1.34 6.21 81.71 0.00 1.18
refer 0.00 0.37 0.15 0.62 7.08

follow 1.04 0.29 0.00 10.71 2.69
share 4.66 1.50 0.70 49.41 45.24

Table 1: Statistics of gaze communication categories in our
VACATION dataset, including the distribution of event-level gaze
communication category over full dataset and the distribution of
atomic-level gaze communication for each event-level category.

tions in dynamic scenes. Then a spatio-temporal reasoning
network is proposed to learn gaze communications by pass-
ing messages over the social graph.

3. The Proposed VACATION Dataset
VACATION contains 300 social videos with diverse gaze

communication behaviors. Example frames can be found in
Fig. 2. Next we will elaborate VACATION from the follow-
ing essential aspects.

3.1. Data Collection
Quality and diversity are two essential factors considered

in our data collection.
High quality. We searched the Youtube engine for more
than 50 famous TV shows and movies (e.g., The Big Bang
Theory, Harry Potter, etc.). Compared with self-shot so-
cial data in laboratory or other limited environments, these
stimuli provide much more natural and richer social inter-
actions in general and representative scenes, and are closer
to real human social behaviors, which helps to better under-
stand and model real human gaze communication behav-
iors. After that, about 1, 000 video clips are roughly split
from the retrieved results. We further eliminate the videos
with big logo or of low-quality. Each of the rest videos is
then cropped with accurate shot boundaries and uniformly
stored in MPEG-4 format with 640×360 spatial resolution.
VACATION finally comprises a total of 300 high-quality so-
cial video sequences with 96,993 frames and 3,880-second
duration. The lengths of videos span from 2.2 to 74.56 sec-
onds and are 13.28 seconds on average.
Diverse social scenes. The collected videos cover diverse
daily social scenes (e.g., party, home, office, etc.), with dif-
ferent cultures (e.g., American, Chinese, Indian, etc.). The
appearances of actors/actresses, costume and props, and
scenario settings, also vary a lot, which makes our dataset
more diverse and general. By training on such data, algo-
rithms are supposed to have better generalization ability in
handling diverse realistic social scenes.

3.2. Data Annotation and Statistics
Our dataset provides rich annotations, including human

face and object bounding boxes, human attention, atomic-
level and event-level gaze communication labels. The an-
notation takes about 1,616 hours in total, considering an av-



Figure 2: Example frames and annotations of our VACATION dataset, showing that our dataset covers rich gaze communication
behaviors, diverse general social scenes, different cultures, etc. It also provides rich annotations, i.e., human face and object bboxes,
gaze communication structures and labels. Human faces and related objects are marked by boxes with the same color of corresponding
communication labels. White lines link entities with gaze relations in a temporal sequence and white arrows indicate gaze directions in the
current frame. There may exist various number of agents, many different gaze communication types and complex communication relations
in one frame, resulting in a highly-challenging and structured task. See §3 for details.

erage annotation time of 1 minute per frame. Three extra
volunteers are included in this process.
Human face and object annotation. We first annotate
each frame with bounding boxes of human face and key ob-
ject, using the online video annotation platform Vatic [61].
206,774 human face bounding boxes (avg. 2.13 per frame)
and 85,441 key object bounding boxes (avg. 0.88 per frame)
are annotated in total.
Human attention annotation. We annotate the attention
of each person in each frame, i.e. the bounding box (human
face or object) this person is gazing at.
Gaze communication labeling. The annotators are in-
structed to annotate both atomic-level and event-level gaze
communication labels for every group of people in each
frame. To ensure the annotation accuracy, we used cross-
validation in the annotation process, i.e., two volunteers an-
notated all the persons in the videos separately, and the dif-
ferences between their annotations were judged by a spe-
cialist in this area. See Table 1 for the information regarding
the distributions of gaze communication categories.
Dataset splitting. Our dataset is split into training, valida-
tion and testing sets with the ratio of 6:2:2. We arrive at a
unique split consisting of 180 training (57,749 frames), 60
validation (22,005 frames), and 60 testing videos (17,239
frames). To avoid over-fitting, there is no source-overlap

VACATION # Video # Frame # Human # GCR
training 180 57,749 123,812 97,265

validation 60 22,005 49,012 42,066
testing 60 17,239 33,950 25,034

full dataset 300 96,993 206,774 164,365

Table 2: Statistics of dataset splitting. GCR refers to Gaze
Communication Relation. See §3.2 for more details.
among videos in different sets (see Table 2 for more de-
tails).
4. Our Approach

We design a spatio-temporal graph neural network to ex-
plicitly represent the diverse interactions in social scenes
and infer atomic-level gaze communications by passing
messages over the graph. Given the atomic-level gaze inter-
action inferences, we further design an event network with
encoder-decoder structure for event-level gaze communica-
tion reasoning. As shown in Fig. 3, gaze communication
entities, i.e., human, social scene, are represented by graph
nodes, gaze communication structures are represented by
edges. We introduce notations and formulations in §4.1 and
provide more implementation details in §4.2.

4.1. Model Formulation
Social Graph. We first define a social graph as a complete
graph G = (V, E), where node v ∈ V takes unique value
from {1, · · · , |V|}, representing the entities (i.e., scene, hu-



Figure 3: Illustration of the proposed spatio-temporal reason-
ing model for gaze communication understanding. Given an input
social video sequence (a), for each frame, a spatial reasoning pro-
cess (b) is first performed for simultaneously capturing gaze com-
munication relations (social graph structure) and updating node
representations through message propagation. Then, in (c), a
temporal reasoning process is applied for each node to dynami-
cally update node representation over temporal domain, which is
achieved by an LSTM. Bolder edges represent higher connectivity
weight inferred in spatial reasoning step (b). See §4.1 for details.

man) in social scenes, and edge e= (v, w) ∈ E indicates a
directed edge v→ w, representing all the possible human-
human gaze interactions or human-scene relations. There
is a special node s ∈ V representing the social scene. For
node v, its node representation/embedding is denoted by a
V -dimensional vector: xv ∈ RV . Similarly, the edge rep-
resentation/embedding for edge e = (v, w) is denoted by
an E-dimensional vector: xv,w ∈ RE . Each human node
v ∈ V\s has an output state lv ∈ L that takes a value from
a set of atomic gaze labels: L= {single, mutual, avert, re-
fer, follow, share}. We further define an adjacency matrix
A ∈ [0, 1]|V|×|V| to represent the communication structure
over our complete social graph G, where each element av,w
represents the connectivity from node v to w.

Different from most previous graph neural networks that
only focus on inferring graph- or node-level labels, our
model aims to learn the graph structure A and the visual la-
bels {lv}v∈V\s of all the human nodes V\s simultaneously.

To this end, our spatio-temporal reasoning model is de-
signed to have two steps. First, in spatial domain, there is
a message passing step (Fig. 3 (b)) that iteratively learns
gaze communication structures A and propagates informa-
tion over A to update node representations. Second, as
shown in Fig. 3 (c), an LSTM is incorporated into our model
for more robust node representation learning by considering
temporal dynamics. A more detailed model architecture is
schematically depicted in Fig. 4. In the following, we de-
scribe the above two steps in detail.
Message Passing based Spatial Reasoning. Inspired by
previous graph neural networks [20, 30, 46], our message
passing step is designed to have three phases, an edge up-
date phase, a graph structure update phase, and a node up-

date phase. The whole message passing process runs for N
iterations to iteratively propagate information. In n-th iter-
ation step, we first perform the edge update phase that up-
dates edge representations y

(n)
v,w by collecting information

from connected nodes:

y(n)
v,w = fE(〈y(n−1)

v ,y(n−1)
w ,xv,w〉), (1)

where y
(n−1)
v indicates the node representation of v in

(n−1)-th step, and 〈·, ·〉 denotes concatenation of vectors.
fE represents an edge update function fE :R2V+E→RE ,
which is implemented by a neural network.

After that, the graph structure update phase updates the
adjacency matrix A to infer the current social graph struc-
ture, according to the updated edge representations y(n)

v,w:

a(n)
v,w = σ(fA(y

(n)
v,w)), (2)

where the connectivity matrix A(n) = [a
(n)
v,w]v,w encodes

current visual communication structures. fA :RE→R is a
connectivity readout network that maps an edge representa-
tion into the connectivity weight, and σ denotes nonlinear
activation function.

Finally, in the node update phase, we update node repre-
sentations y(n)

v via considering all the incoming edge infor-
mation weighted by the corresponding connectivity:

y(n)
v = fV (〈

∑
w
a(n)
v,wy

(n)
v,w,xv〉), (3)

where fV :RV+E→RV represents a node update network .
The above functions f(·) are all learned differentiable

functions. In the above message passing process, we infer
social communication structures in the graph structure up-
date phase (Eq. 2), where the relations between each social
entities are learned through updated edge representations
(Eq. 1). Then, the information is propagated through the
learned social graph structure and the hidden state of each
node is updated based on its history and incoming messages
from its neighborhoods (Eq. 3). If we know whether there
exist interactions between nodes (human, object), i.e., given
the groundtruth of A, we can learn A in an explicit manner,
which is similar to the graph parsing network [46]. Other-
wise, the adjacent matrix A can be viewed as an attention
or gating mechanism that automatically weights the mes-
sages and can be learned in an implicit manner; this shares
a similar spirit with graph attention network [60]. More im-
plementation details can be found in §4.2.
Recurrent Network based Temporal Reasoning. Since
our task is defined on a spatio-temporal domain, tempo-
ral dynamics should be considered for more comprehensive
reasoning. With the updated human node representations
{yv ∈ RV }v∈V\s from our message passing based spatial
reasoning model, we further apply LSTM to each node for
temporal reasoning. More specifically, our temporal rea-
soning step has two phases: a temporal message passing



Figure 4: Detailed architecture of the proposed spatio-temporal reasoning model for gaze communication understanding. See the last
paragraph in §4.1 for detailed descriptions.

phase and a readout phase. We denote by yt
v the feature of

a human node v ∈ V\s at time t, which is obtained after
N -iteration spatial message passing. In the temporal mes-
sage passing phase, we propagate the information over the
temporal axis using LSTM:

ht
v = fLSTM(y

t
v|ht−1

v ), (4)

where fLSTM : RV → RV is an LSTM based temporal rea-
soning function that updates the node representation using
temporal information. yt

v is used as the input of the LSTM
at time t, and ht

v indicates the corresponding hidden state
output via considering previous information ht−1

v .
Then, in the readout phase, for each human node v, a

corresponding gaze label l̂tv ∈L is predicted from the final
node representation ht

v:

l̂tv = fR(h
t
v), (5)

where fR : RV → L maps the node feature into the label
space L, which is implemented by a classifier network.
Event Network. The event network is designed with an
encoder-decoder structure to learn the correlation of the
atomic gazes and classify the event-level gaze communica-
tion for each video sequence. To reduce the large variance
of video length, we pre-process the input atomic gaze se-
quence into two vectors: i) the transition vector that records
each transition from one category of atomic gaze to an-
other, and ii) the frequency vector that computes the fre-
quency of each atomic type. The encoder individually en-
codes the transition vector and frequency vector into two
embedded vectors. The decoder decodes the concatenation
of these two embedded vectors and makes final event la-
bel prediction. Since the atomic gaze communications are
noisy within communicative activities, the encoder-decoder

structure will try to eliminate the noise and improve the pre-
diction performance. The encoder and decoder are both im-
plemented by fully-connected layers.

Before going deep into our model implementation, we
offer a short summary of the whole spatio-temporal rea-
soning process. As shown in Fig. 4, with an input so-
cial video (a), for each frame, we build an initial complete
graph G (b) to represent the gaze communication entities
(i.e., humans and social scene) by nodes and their relations
by edges. During the spatial reasoning step (c), we first
update edge representations using Eq. 1 (note the changed
edge color compared to (b)). Then, in the graph structure
update phase, we infer the graph structure through updating
the connectivities between each node pairs using Eq. 2 (note
the changed edge thickness compared to (b)). In the node
update phase, we update node embeddings using Eq. 3 (note
the changed node color compared to (b)). Iterating above
processes leads to efficient message propagation in spatial
domain. After several spatial message passing iterations,
we feed the enhanced node feature into a LSTM based tem-
poral reasoning module, to capture the temporal dynamics
(Eq. 4) and predict final atomic gaze communication labels
(Eq. 5). We then use event network to reason about event-
level labels based on previous inferred atomic-level label
compositions for a long sequence in a larger time scale.
4.2. Detailed Network Architecture
Attention Graph Learning. In our social graph, the ad-
jacency matrix A stores the attention relations between
nodes, i.e., representing the interactions between the enti-
ties in the social scene. Since we have annotated all the
directed human-human interactions and human-scene rela-
tions (§3.2), we learn the adjacency matrix A in an explicit
manner (under the supervision of ground-truth). Addition-
ally, for the scene node s, since it’s a ‘dummy’ node, we en-



Atomic-level Gaze Communication (Precision & F1-score)Task
single mutual avert refer follow share Avg. Acc.

Metric P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ top-1 (%) ↑ top-2 (%) ↑
Ours-full 22.10 26.17 98.68 98.60 59.20 74.28 56.90 53.16 32.83 18.05 61.51 46.61 55.02 76.45(iteration 2)

Chance 16.50 16.45 16.42 16.65 16.65 16.51 16.07 16.06 16.80 16.74 16.20 16.25 16.44 -
CNN 21.32 27.89 15.99 14.48 47.81 50.82 0.00 0.00 19.21 23.10 11.70 2.80 23.05 40.32

CNN+LSTM 22.10 11.78 18.55 16.37 64.24 59.57 13.69 18.55 22.70 29.13 17.18 3.61 24.65 45.50
CNN+SVM 19.92 23.63 28.46 38.30 68.53 76.07 15.15 6.32 23.28 16.87 40.76 49.24 36.23 -

CNN+RF 53.12 57.98 20.78 0.24 0.00 0.00 51.88 27.31 15.90 19.39 35.56 44.42 37.68 -
PRNet 0.00 0.00 47.52 52.54 89.63 58.00 19.49 21.52 19.72 22.05 48.69 62.40 39.59 61.45

VGG16 35.55 48.93 99.70 99.85 76.95 13.04 37.02 31.88 26.62 20.89 53.05 59.88 49.91 72.18
Resnet50 (192-d) 33.61 38.19 78.22 85.66 62.27 76.75 18.58 11.21 35.89 18.55 57.82 60.26 53.72 77.16

AdjMat-only 34.00 22.63 31.46 22.81 38.06 52.42 27.70 26.79 25.42 25.25 32.32 28.69 32.64 46.48
2 branch-iteration 2 20.43 8.93 92.65 76.03 47.57 59.47 40.34 45.35 36.36 35.77 55.15 57.93 49.57 80.33
2 branch-iteration 3 18.92 19.67 99.72 97.18 57.69 60.18 11.92 6.19 31.10 20.40 39.67 53.22 46.39 66.77

Ours-iteration 1 6.69 4.66 49.39 47.96 36.56 39.44 25.89 27.82 35.05 31.93 36.71 42.22 33.67 53.97
Ours-iteration 3 44.83 0.77 51.29 66.41 47.09 64.03 0.00 0.00 25.95 26.20 47.42 46.74 44.52 72.77
Ours-iteration 4 28.01 5.77 99.59 93.15 42.06 59.06 38.46 14.02 22.02 17.54 43.69 55.77 48.35 72.35

Ours w/o. temporal reason. 13.74 10.80 98.64 98.54 54.54 53.17 55.87 53.75 40.83 25.00 45.89 61.55 53.73 80.33
Ours w. implicit learn. 30.60 9.15 33.00 34.56 43.39 56.00 21.50 26.98 22.43 18.63 58.30 39.33 33.74 56.54

Table 3: Quantitative results of atomic-level gaze communication prediction. The best scores are marked in bold.

force av,s as 0, where v∈V . In this way, other human nodes
cannot influence the state of the scene node during message
passing. In our experiments, we will offer more detailed re-
sults regarding learning A in an implicit (w/o. ground-truth)
or explicit manner.
Node/Edge Feature Initialization. For each node v ∈
V\s, the 4096-d features (from the fc7 layer of a pre-
trained ResNet50 [24]) are extracted from the correspond-
ing bounding box as its initial feature xv . For the scene
node s, the fc7 feature of the whole frame is used as its
node representation xs. To decrease the amount of param-
eter, we use fully connected layer to compress all the node
features into 6-d and then encode a 6-d node position info
with it. For an edge e=(v, w)∈V , we just concatenate the
related two node features as its initial feature xv,w. Thus,
we have V =12 and E=24.
Graph Network Implementations. The functions f(·) in
Eqs. 1, 2 and 5 are all implemented by fully connected lay-
ers, whose configurations can be determined according to
their corresponding definitions. The function in Eq. 3 is im-
plemented by gated recurrent unit (GRU) network.
Loss functions. When explicitly learning the adjacency
matrix, we treat it as a binary classification problem and
use the cross entropy loss. We also employ standard cross
entropy loss for the multi-class classification of gaze com-
munication labels.

5. Experiments
5.1. Experimental Setup
Evaluation Metrics. Four evaluation metrics, we use pre-
cision, F1-score, top-1 Avg. Acc. and top-2 Avg. Acc. in
our experiments. Precision P refers to the ratio of true-
positive classifications to all positive classifications. F1-
score F is the harmonic mean of the precision and recall:
2×precision×recall/(precision+recall). Top-1 Avg. Acc.

and top-2 Avg. Acc. calculate the average label classifica-
tion accuracy over all the test set.
Implementation Details. Our model is implemented by
PyTorch. During training phase, the learning rate is set to
1e-1, and decays by 0.1 per epoch. For the atomic-gaze in-
teraction temporal reasoning module, we set the sequential
length to 5 frames according to our dataset statistics. The
training process takes about 10 epochs (5 hours) to roughly
converge with an NVIDIA TITAN X GPU.
Baselines. To better evaluate the performance of our model,
we consider the following baselines:
• Chance is a weak baseline, i.e., randomly assigning an
atomic gaze communication label to each human node.
• CNN uses three Conv2d layers to extract features for
each human node and concatenates the features with posi-
tion info. for label classification (no spatial communication
structure, no temporal relations).
• CNN+LSTM feeds the CNN-based node feature to an
LSTM (only temporal dynamics, no spatial structures).
• CNN+SVM concatenates the CNN-based node features
and feeds it into a Support Vector Machine classifier.
• CNN+RF replaces the above SVM classifier with a Ran-
dom Forest classifier.
• FC-w/o. GT & FC-w. GT are fully connected layers with-
out or with ground truth atomic gaze labels.
Ablation Study. To assess the effectiveness of our essential
model components, we derive the following variants:
• Different node feature. We try different ways to ex-
tract node features. PRNet uses 68 3D face keypoints ex-
tracted by PRNet [19]. VGG16 replaces Resnet50 with
VGG16 [53]. Resnet50 (192-d) compresses the 4096-d fea-
tures from fc7 layer of Resnet50 [24] to 192-d.
• AdjMat-only directly feeds the explicitly learned adja-
cency matrix into some Conv3d layers for classification.
• 2 branch concatenates a second adjacency matrix branch



Event-level Gaze Communication (Precision & F1-score)Task
Non-Comm. Mutual Gaze Gaze Aversion Gaze Following Joint Attention Avg. Acc.

Metric P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ P (%) ↑ F (%) ↑ top-1 (%) ↑ top-2 (%) ↑
Chance 21.3 29.3 25.0 23.0 20.0 14.8 36.3 15.1 20.3 22.1 22.7 45.0

FC-w/o. GT 43.7 44.3 16.9 23.3 6.2 10.0 8.3 9.1 60.9 40.2 35.6 69.1
Ours-w/o. GT 50.7 49.3 16.7 21.0 8.2 11.3 6.2 7.7 60.9 40.0 37.1 65.5

FC-w. GT 90.7 70.7 12.3 30.8 22.2 30.8 15.0 48.3 56.8 57.1 52.6 86.5
Ours-w. GT 91.4 72.7 14.5 32.3 18.5 45.5 20.0 66.7 62.2 30.8 55.9 79.4

Table 4: Quantitative results of event-level gaze communication prediction. The best scores are marked in bold.

Figure 5: Qualitative results of atomic-level gaze communication prediction. Correctly inferred labels are shown in black while error
examples are shown in red.

alongside the GNN branch for classification. We test with
different message passing iterations.
• Ours-iteration 1,2,3,4 test different message passing iter-
ations in the spatial reasoning phase of our full model.
• Ours w/o. temporal reason. replaces LSTM with Cond3d
layers in the temporal reasoning phase of our full model.
• Ours w. implicit learn. is achieved by unsupervisedly
learning adjacent matrix A (w/o. attention ground truths).

5.2. Results and Analyses
Overall Quantitative Results. The quantitative results are
shown in Table 3 and 4 respectively for the atomic-level and
event-level gaze communication classification experiments.
For the atomic-level task, our full model achieves the best
top-1 avg. acc. (55.02%) on the test set and shows good
and balanced performance for each atomic type instead of
overfitting to certain categories. For the event-level task,
our event network improves the top-1 avg. acc. on the test
set, achieving 37.1% with the predicted atomic labels and
55.9% with the ground truth atomic labels.
In-depth Analyses. For atomic-level task, we examined
different ways to extract node features and find Restnet50
the best. Also, compressing the Resnet50 feature to a low
dimension still performs well and efficiently (full model vs.
Resnet50 192-d). The performance of AdjMat-only which
directly uses the concatenated adjacency matrix can obtain
some reasonable results compared to the weak baselines
but not good enough, which is probably because that gaze
communication dynamic understanding is not simply about
geometric attention relations, but also depends on a deep
and comprehensive understanding of spatial-temporal scene

context. We examine the effect of iterative message passing
and find it is able to gradually improve the performance in
general. But with iterations increased to a certain extent, the
performance drops slightly.
Qualitative Results. Fig. 5 shows some visual results of
our full model for atomic-level gaze communication recog-
nition. The predicted communication structures are shown
with bounding boxes and arrows. Our method can correctly
recognize different atomic-level gaze communication types
(shown in black) with effective spatial-temporal graph rea-
soning. We also present some failure cases (shown in red),
which may be due to the ambiguity and subtlety of gaze
interactions, and the illegibility of eyes. Also, the shift be-
tween gaze phases could be fast and some phases are very
short, making it hard to recognize.

6. Conclusion
We address a new problem of inferring human gaze com-

munication from both atomic-level and event-level in third-
person social videos. We propose a new video dataset VA-
CATION and a spatial-temporal graph reasoning model, and
show benchmark results on our dataset. We hope our work
will serve as important resources to facilitate future studies
related to this important topic.
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